(0) Obligation:
Clauses:
tree(nil).
tree(node(L, X, R)) :- ','(tree(L), tree(R)).
s2t(s(X), node(T, Y, T)) :- s2t(X, T).
s2t(s(X), node(nil, Y, T)) :- s2t(X, T).
s2t(s(X), node(T, Y, nil)) :- s2t(X, T).
s2t(s(X), node(nil, Y, nil)).
s2t(0, nil).
goal(X) :- ','(s2t(X, T), tree(T)).
Query: goal(g)
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph DT10.
(2) Obligation:
Triples:
s2tA(s(X1), node(X2, X3, X2)) :- s2tA(X1, X2).
s2tA(s(X1), node(nil, X2, X3)) :- s2tA(X1, X3).
s2tA(s(X1), node(X2, X3, nil)) :- s2tA(X1, X2).
treeB(node(X1, X2, X3)) :- treeB(X1).
treeB(node(X1, X2, X3)) :- ','(treecB(X1), treeB(X3)).
goalD(s(X1)) :- s2tA(X1, X2).
goalD(s(X1)) :- ','(s2tcA(X1, X2), treeB(X2)).
goalD(s(X1)) :- ','(s2tcA(X1, X2), ','(treecB(X2), treeB(X2))).
goalD(s(X1)) :- s2tA(X1, X2).
goalD(s(X1)) :- ','(s2tcA(X1, X2), treeB(node(nil, X3, X2))).
goalD(s(X1)) :- s2tA(X1, X2).
goalD(s(X1)) :- ','(s2tcA(X1, X2), treeB(node(X2, X3, nil))).
goalD(s(X1)) :- treeC.
goalD(s(X1)) :- ','(treecC, treeC).
goalD(0) :- treeC.
Clauses:
s2tcA(s(X1), node(X2, X3, X2)) :- s2tcA(X1, X2).
s2tcA(s(X1), node(nil, X2, X3)) :- s2tcA(X1, X3).
s2tcA(s(X1), node(X2, X3, nil)) :- s2tcA(X1, X2).
s2tcA(s(X1), node(nil, X2, nil)).
s2tcA(0, nil).
treecB(nil).
treecB(node(X1, X2, X3)) :- ','(treecB(X1), treecB(X3)).
treecC.
Afs:
goalD(x1) = goalD(x1)
(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)
Deleted triples and predicates having undefined goals [DT09].
(4) Obligation:
Triples:
s2tA(s(X1), node(X2, X3, X2)) :- s2tA(X1, X2).
s2tA(s(X1), node(nil, X2, X3)) :- s2tA(X1, X3).
s2tA(s(X1), node(X2, X3, nil)) :- s2tA(X1, X2).
treeB(node(X1, X2, X3)) :- treeB(X1).
treeB(node(X1, X2, X3)) :- ','(treecB(X1), treeB(X3)).
goalD(s(X1)) :- s2tA(X1, X2).
goalD(s(X1)) :- ','(s2tcA(X1, X2), treeB(X2)).
goalD(s(X1)) :- ','(s2tcA(X1, X2), ','(treecB(X2), treeB(X2))).
goalD(s(X1)) :- s2tA(X1, X2).
goalD(s(X1)) :- ','(s2tcA(X1, X2), treeB(node(nil, X3, X2))).
goalD(s(X1)) :- s2tA(X1, X2).
goalD(s(X1)) :- ','(s2tcA(X1, X2), treeB(node(X2, X3, nil))).
Clauses:
s2tcA(s(X1), node(X2, X3, X2)) :- s2tcA(X1, X2).
s2tcA(s(X1), node(nil, X2, X3)) :- s2tcA(X1, X3).
s2tcA(s(X1), node(X2, X3, nil)) :- s2tcA(X1, X2).
s2tcA(s(X1), node(nil, X2, nil)).
s2tcA(0, nil).
treecB(nil).
treecB(node(X1, X2, X3)) :- ','(treecB(X1), treecB(X3)).
treecC.
Afs:
goalD(x1) = goalD(x1)
(5) TriplesToPiDPProof (SOUND transformation)
We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
goalD_in: (b)
s2tA_in: (b,f)
s2tcA_in: (b,f)
treeB_in: (b)
treecB_in: (b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
GOALD_IN_G(s(X1)) → U7_G(X1, s2tA_in_ga(X1, X2))
GOALD_IN_G(s(X1)) → S2TA_IN_GA(X1, X2)
S2TA_IN_GA(s(X1), node(X2, X3, X2)) → U1_GA(X1, X2, X3, s2tA_in_ga(X1, X2))
S2TA_IN_GA(s(X1), node(X2, X3, X2)) → S2TA_IN_GA(X1, X2)
S2TA_IN_GA(s(X1), node(nil, X2, X3)) → U2_GA(X1, X2, X3, s2tA_in_ga(X1, X3))
S2TA_IN_GA(s(X1), node(nil, X2, X3)) → S2TA_IN_GA(X1, X3)
S2TA_IN_GA(s(X1), node(X2, X3, nil)) → U3_GA(X1, X2, X3, s2tA_in_ga(X1, X2))
S2TA_IN_GA(s(X1), node(X2, X3, nil)) → S2TA_IN_GA(X1, X2)
GOALD_IN_G(s(X1)) → U8_G(X1, s2tcA_in_ga(X1, X2))
U8_G(X1, s2tcA_out_ga(X1, X2)) → U9_G(X1, treeB_in_g(X2))
U8_G(X1, s2tcA_out_ga(X1, X2)) → TREEB_IN_G(X2)
TREEB_IN_G(node(X1, X2, X3)) → U4_G(X1, X2, X3, treeB_in_g(X1))
TREEB_IN_G(node(X1, X2, X3)) → TREEB_IN_G(X1)
TREEB_IN_G(node(X1, X2, X3)) → U5_G(X1, X2, X3, treecB_in_g(X1))
U5_G(X1, X2, X3, treecB_out_g(X1)) → U6_G(X1, X2, X3, treeB_in_g(X3))
U5_G(X1, X2, X3, treecB_out_g(X1)) → TREEB_IN_G(X3)
U8_G(X1, s2tcA_out_ga(X1, X2)) → U10_G(X1, X2, treecB_in_g(X2))
U10_G(X1, X2, treecB_out_g(X2)) → U11_G(X1, treeB_in_g(X2))
U10_G(X1, X2, treecB_out_g(X2)) → TREEB_IN_G(X2)
U8_G(X1, s2tcA_out_ga(X1, X2)) → U12_G(X1, treeB_in_g(node(nil, X3, X2)))
U8_G(X1, s2tcA_out_ga(X1, X2)) → TREEB_IN_G(node(nil, X3, X2))
U8_G(X1, s2tcA_out_ga(X1, X2)) → U13_G(X1, treeB_in_g(node(X2, X3, nil)))
U8_G(X1, s2tcA_out_ga(X1, X2)) → TREEB_IN_G(node(X2, X3, nil))
The TRS R consists of the following rules:
s2tcA_in_ga(s(X1), node(X2, X3, X2)) → U15_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, X3)) → U16_ga(X1, X2, X3, s2tcA_in_ga(X1, X3))
s2tcA_in_ga(s(X1), node(X2, X3, nil)) → U17_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, nil)) → s2tcA_out_ga(s(X1), node(nil, X2, nil))
s2tcA_in_ga(0, nil) → s2tcA_out_ga(0, nil)
U17_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, nil))
U16_ga(X1, X2, X3, s2tcA_out_ga(X1, X3)) → s2tcA_out_ga(s(X1), node(nil, X2, X3))
U15_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, X2))
treecB_in_g(nil) → treecB_out_g(nil)
treecB_in_g(node(X1, X2, X3)) → U18_g(X1, X2, X3, treecB_in_g(X1))
U18_g(X1, X2, X3, treecB_out_g(X1)) → U19_g(X1, X2, X3, treecB_in_g(X3))
U19_g(X1, X2, X3, treecB_out_g(X3)) → treecB_out_g(node(X1, X2, X3))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
s2tA_in_ga(
x1,
x2) =
s2tA_in_ga(
x1)
node(
x1,
x2,
x3) =
node(
x1,
x3)
s2tcA_in_ga(
x1,
x2) =
s2tcA_in_ga(
x1)
U15_ga(
x1,
x2,
x3,
x4) =
U15_ga(
x1,
x4)
U16_ga(
x1,
x2,
x3,
x4) =
U16_ga(
x1,
x4)
U17_ga(
x1,
x2,
x3,
x4) =
U17_ga(
x1,
x4)
s2tcA_out_ga(
x1,
x2) =
s2tcA_out_ga(
x1,
x2)
0 =
0
treeB_in_g(
x1) =
treeB_in_g(
x1)
treecB_in_g(
x1) =
treecB_in_g(
x1)
nil =
nil
treecB_out_g(
x1) =
treecB_out_g(
x1)
U18_g(
x1,
x2,
x3,
x4) =
U18_g(
x1,
x3,
x4)
U19_g(
x1,
x2,
x3,
x4) =
U19_g(
x1,
x3,
x4)
GOALD_IN_G(
x1) =
GOALD_IN_G(
x1)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
S2TA_IN_GA(
x1,
x2) =
S2TA_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x1,
x4)
U2_GA(
x1,
x2,
x3,
x4) =
U2_GA(
x1,
x4)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U8_G(
x1,
x2) =
U8_G(
x1,
x2)
U9_G(
x1,
x2) =
U9_G(
x1,
x2)
TREEB_IN_G(
x1) =
TREEB_IN_G(
x1)
U4_G(
x1,
x2,
x3,
x4) =
U4_G(
x1,
x3,
x4)
U5_G(
x1,
x2,
x3,
x4) =
U5_G(
x1,
x3,
x4)
U6_G(
x1,
x2,
x3,
x4) =
U6_G(
x1,
x3,
x4)
U10_G(
x1,
x2,
x3) =
U10_G(
x1,
x2,
x3)
U11_G(
x1,
x2) =
U11_G(
x1,
x2)
U12_G(
x1,
x2) =
U12_G(
x1,
x2)
U13_G(
x1,
x2) =
U13_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOALD_IN_G(s(X1)) → U7_G(X1, s2tA_in_ga(X1, X2))
GOALD_IN_G(s(X1)) → S2TA_IN_GA(X1, X2)
S2TA_IN_GA(s(X1), node(X2, X3, X2)) → U1_GA(X1, X2, X3, s2tA_in_ga(X1, X2))
S2TA_IN_GA(s(X1), node(X2, X3, X2)) → S2TA_IN_GA(X1, X2)
S2TA_IN_GA(s(X1), node(nil, X2, X3)) → U2_GA(X1, X2, X3, s2tA_in_ga(X1, X3))
S2TA_IN_GA(s(X1), node(nil, X2, X3)) → S2TA_IN_GA(X1, X3)
S2TA_IN_GA(s(X1), node(X2, X3, nil)) → U3_GA(X1, X2, X3, s2tA_in_ga(X1, X2))
S2TA_IN_GA(s(X1), node(X2, X3, nil)) → S2TA_IN_GA(X1, X2)
GOALD_IN_G(s(X1)) → U8_G(X1, s2tcA_in_ga(X1, X2))
U8_G(X1, s2tcA_out_ga(X1, X2)) → U9_G(X1, treeB_in_g(X2))
U8_G(X1, s2tcA_out_ga(X1, X2)) → TREEB_IN_G(X2)
TREEB_IN_G(node(X1, X2, X3)) → U4_G(X1, X2, X3, treeB_in_g(X1))
TREEB_IN_G(node(X1, X2, X3)) → TREEB_IN_G(X1)
TREEB_IN_G(node(X1, X2, X3)) → U5_G(X1, X2, X3, treecB_in_g(X1))
U5_G(X1, X2, X3, treecB_out_g(X1)) → U6_G(X1, X2, X3, treeB_in_g(X3))
U5_G(X1, X2, X3, treecB_out_g(X1)) → TREEB_IN_G(X3)
U8_G(X1, s2tcA_out_ga(X1, X2)) → U10_G(X1, X2, treecB_in_g(X2))
U10_G(X1, X2, treecB_out_g(X2)) → U11_G(X1, treeB_in_g(X2))
U10_G(X1, X2, treecB_out_g(X2)) → TREEB_IN_G(X2)
U8_G(X1, s2tcA_out_ga(X1, X2)) → U12_G(X1, treeB_in_g(node(nil, X3, X2)))
U8_G(X1, s2tcA_out_ga(X1, X2)) → TREEB_IN_G(node(nil, X3, X2))
U8_G(X1, s2tcA_out_ga(X1, X2)) → U13_G(X1, treeB_in_g(node(X2, X3, nil)))
U8_G(X1, s2tcA_out_ga(X1, X2)) → TREEB_IN_G(node(X2, X3, nil))
The TRS R consists of the following rules:
s2tcA_in_ga(s(X1), node(X2, X3, X2)) → U15_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, X3)) → U16_ga(X1, X2, X3, s2tcA_in_ga(X1, X3))
s2tcA_in_ga(s(X1), node(X2, X3, nil)) → U17_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, nil)) → s2tcA_out_ga(s(X1), node(nil, X2, nil))
s2tcA_in_ga(0, nil) → s2tcA_out_ga(0, nil)
U17_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, nil))
U16_ga(X1, X2, X3, s2tcA_out_ga(X1, X3)) → s2tcA_out_ga(s(X1), node(nil, X2, X3))
U15_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, X2))
treecB_in_g(nil) → treecB_out_g(nil)
treecB_in_g(node(X1, X2, X3)) → U18_g(X1, X2, X3, treecB_in_g(X1))
U18_g(X1, X2, X3, treecB_out_g(X1)) → U19_g(X1, X2, X3, treecB_in_g(X3))
U19_g(X1, X2, X3, treecB_out_g(X3)) → treecB_out_g(node(X1, X2, X3))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
s2tA_in_ga(
x1,
x2) =
s2tA_in_ga(
x1)
node(
x1,
x2,
x3) =
node(
x1,
x3)
s2tcA_in_ga(
x1,
x2) =
s2tcA_in_ga(
x1)
U15_ga(
x1,
x2,
x3,
x4) =
U15_ga(
x1,
x4)
U16_ga(
x1,
x2,
x3,
x4) =
U16_ga(
x1,
x4)
U17_ga(
x1,
x2,
x3,
x4) =
U17_ga(
x1,
x4)
s2tcA_out_ga(
x1,
x2) =
s2tcA_out_ga(
x1,
x2)
0 =
0
treeB_in_g(
x1) =
treeB_in_g(
x1)
treecB_in_g(
x1) =
treecB_in_g(
x1)
nil =
nil
treecB_out_g(
x1) =
treecB_out_g(
x1)
U18_g(
x1,
x2,
x3,
x4) =
U18_g(
x1,
x3,
x4)
U19_g(
x1,
x2,
x3,
x4) =
U19_g(
x1,
x3,
x4)
GOALD_IN_G(
x1) =
GOALD_IN_G(
x1)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
S2TA_IN_GA(
x1,
x2) =
S2TA_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x1,
x4)
U2_GA(
x1,
x2,
x3,
x4) =
U2_GA(
x1,
x4)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U8_G(
x1,
x2) =
U8_G(
x1,
x2)
U9_G(
x1,
x2) =
U9_G(
x1,
x2)
TREEB_IN_G(
x1) =
TREEB_IN_G(
x1)
U4_G(
x1,
x2,
x3,
x4) =
U4_G(
x1,
x3,
x4)
U5_G(
x1,
x2,
x3,
x4) =
U5_G(
x1,
x3,
x4)
U6_G(
x1,
x2,
x3,
x4) =
U6_G(
x1,
x3,
x4)
U10_G(
x1,
x2,
x3) =
U10_G(
x1,
x2,
x3)
U11_G(
x1,
x2) =
U11_G(
x1,
x2)
U12_G(
x1,
x2) =
U12_G(
x1,
x2)
U13_G(
x1,
x2) =
U13_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 17 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
TREEB_IN_G(node(X1, X2, X3)) → U5_G(X1, X2, X3, treecB_in_g(X1))
U5_G(X1, X2, X3, treecB_out_g(X1)) → TREEB_IN_G(X3)
TREEB_IN_G(node(X1, X2, X3)) → TREEB_IN_G(X1)
The TRS R consists of the following rules:
s2tcA_in_ga(s(X1), node(X2, X3, X2)) → U15_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, X3)) → U16_ga(X1, X2, X3, s2tcA_in_ga(X1, X3))
s2tcA_in_ga(s(X1), node(X2, X3, nil)) → U17_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, nil)) → s2tcA_out_ga(s(X1), node(nil, X2, nil))
s2tcA_in_ga(0, nil) → s2tcA_out_ga(0, nil)
U17_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, nil))
U16_ga(X1, X2, X3, s2tcA_out_ga(X1, X3)) → s2tcA_out_ga(s(X1), node(nil, X2, X3))
U15_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, X2))
treecB_in_g(nil) → treecB_out_g(nil)
treecB_in_g(node(X1, X2, X3)) → U18_g(X1, X2, X3, treecB_in_g(X1))
U18_g(X1, X2, X3, treecB_out_g(X1)) → U19_g(X1, X2, X3, treecB_in_g(X3))
U19_g(X1, X2, X3, treecB_out_g(X3)) → treecB_out_g(node(X1, X2, X3))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
node(
x1,
x2,
x3) =
node(
x1,
x3)
s2tcA_in_ga(
x1,
x2) =
s2tcA_in_ga(
x1)
U15_ga(
x1,
x2,
x3,
x4) =
U15_ga(
x1,
x4)
U16_ga(
x1,
x2,
x3,
x4) =
U16_ga(
x1,
x4)
U17_ga(
x1,
x2,
x3,
x4) =
U17_ga(
x1,
x4)
s2tcA_out_ga(
x1,
x2) =
s2tcA_out_ga(
x1,
x2)
0 =
0
treecB_in_g(
x1) =
treecB_in_g(
x1)
nil =
nil
treecB_out_g(
x1) =
treecB_out_g(
x1)
U18_g(
x1,
x2,
x3,
x4) =
U18_g(
x1,
x3,
x4)
U19_g(
x1,
x2,
x3,
x4) =
U19_g(
x1,
x3,
x4)
TREEB_IN_G(
x1) =
TREEB_IN_G(
x1)
U5_G(
x1,
x2,
x3,
x4) =
U5_G(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
TREEB_IN_G(node(X1, X2, X3)) → U5_G(X1, X2, X3, treecB_in_g(X1))
U5_G(X1, X2, X3, treecB_out_g(X1)) → TREEB_IN_G(X3)
TREEB_IN_G(node(X1, X2, X3)) → TREEB_IN_G(X1)
The TRS R consists of the following rules:
treecB_in_g(nil) → treecB_out_g(nil)
treecB_in_g(node(X1, X2, X3)) → U18_g(X1, X2, X3, treecB_in_g(X1))
U18_g(X1, X2, X3, treecB_out_g(X1)) → U19_g(X1, X2, X3, treecB_in_g(X3))
U19_g(X1, X2, X3, treecB_out_g(X3)) → treecB_out_g(node(X1, X2, X3))
The argument filtering Pi contains the following mapping:
node(
x1,
x2,
x3) =
node(
x1,
x3)
treecB_in_g(
x1) =
treecB_in_g(
x1)
nil =
nil
treecB_out_g(
x1) =
treecB_out_g(
x1)
U18_g(
x1,
x2,
x3,
x4) =
U18_g(
x1,
x3,
x4)
U19_g(
x1,
x2,
x3,
x4) =
U19_g(
x1,
x3,
x4)
TREEB_IN_G(
x1) =
TREEB_IN_G(
x1)
U5_G(
x1,
x2,
x3,
x4) =
U5_G(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TREEB_IN_G(node(X1, X3)) → U5_G(X1, X3, treecB_in_g(X1))
U5_G(X1, X3, treecB_out_g(X1)) → TREEB_IN_G(X3)
TREEB_IN_G(node(X1, X3)) → TREEB_IN_G(X1)
The TRS R consists of the following rules:
treecB_in_g(nil) → treecB_out_g(nil)
treecB_in_g(node(X1, X3)) → U18_g(X1, X3, treecB_in_g(X1))
U18_g(X1, X3, treecB_out_g(X1)) → U19_g(X1, X3, treecB_in_g(X3))
U19_g(X1, X3, treecB_out_g(X3)) → treecB_out_g(node(X1, X3))
The set Q consists of the following terms:
treecB_in_g(x0)
U18_g(x0, x1, x2)
U19_g(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U5_G(X1, X3, treecB_out_g(X1)) → TREEB_IN_G(X3)
The graph contains the following edges 2 >= 1
- TREEB_IN_G(node(X1, X3)) → TREEB_IN_G(X1)
The graph contains the following edges 1 > 1
- TREEB_IN_G(node(X1, X3)) → U5_G(X1, X3, treecB_in_g(X1))
The graph contains the following edges 1 > 1, 1 > 2
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2TA_IN_GA(s(X1), node(nil, X2, X3)) → S2TA_IN_GA(X1, X3)
S2TA_IN_GA(s(X1), node(X2, X3, X2)) → S2TA_IN_GA(X1, X2)
S2TA_IN_GA(s(X1), node(X2, X3, nil)) → S2TA_IN_GA(X1, X2)
The TRS R consists of the following rules:
s2tcA_in_ga(s(X1), node(X2, X3, X2)) → U15_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, X3)) → U16_ga(X1, X2, X3, s2tcA_in_ga(X1, X3))
s2tcA_in_ga(s(X1), node(X2, X3, nil)) → U17_ga(X1, X2, X3, s2tcA_in_ga(X1, X2))
s2tcA_in_ga(s(X1), node(nil, X2, nil)) → s2tcA_out_ga(s(X1), node(nil, X2, nil))
s2tcA_in_ga(0, nil) → s2tcA_out_ga(0, nil)
U17_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, nil))
U16_ga(X1, X2, X3, s2tcA_out_ga(X1, X3)) → s2tcA_out_ga(s(X1), node(nil, X2, X3))
U15_ga(X1, X2, X3, s2tcA_out_ga(X1, X2)) → s2tcA_out_ga(s(X1), node(X2, X3, X2))
treecB_in_g(nil) → treecB_out_g(nil)
treecB_in_g(node(X1, X2, X3)) → U18_g(X1, X2, X3, treecB_in_g(X1))
U18_g(X1, X2, X3, treecB_out_g(X1)) → U19_g(X1, X2, X3, treecB_in_g(X3))
U19_g(X1, X2, X3, treecB_out_g(X3)) → treecB_out_g(node(X1, X2, X3))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
node(
x1,
x2,
x3) =
node(
x1,
x3)
s2tcA_in_ga(
x1,
x2) =
s2tcA_in_ga(
x1)
U15_ga(
x1,
x2,
x3,
x4) =
U15_ga(
x1,
x4)
U16_ga(
x1,
x2,
x3,
x4) =
U16_ga(
x1,
x4)
U17_ga(
x1,
x2,
x3,
x4) =
U17_ga(
x1,
x4)
s2tcA_out_ga(
x1,
x2) =
s2tcA_out_ga(
x1,
x2)
0 =
0
treecB_in_g(
x1) =
treecB_in_g(
x1)
nil =
nil
treecB_out_g(
x1) =
treecB_out_g(
x1)
U18_g(
x1,
x2,
x3,
x4) =
U18_g(
x1,
x3,
x4)
U19_g(
x1,
x2,
x3,
x4) =
U19_g(
x1,
x3,
x4)
S2TA_IN_GA(
x1,
x2) =
S2TA_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2TA_IN_GA(s(X1), node(nil, X2, X3)) → S2TA_IN_GA(X1, X3)
S2TA_IN_GA(s(X1), node(X2, X3, X2)) → S2TA_IN_GA(X1, X2)
S2TA_IN_GA(s(X1), node(X2, X3, nil)) → S2TA_IN_GA(X1, X2)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
node(
x1,
x2,
x3) =
node(
x1,
x3)
nil =
nil
S2TA_IN_GA(
x1,
x2) =
S2TA_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2TA_IN_GA(s(X1)) → S2TA_IN_GA(X1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S2TA_IN_GA(s(X1)) → S2TA_IN_GA(X1)
The graph contains the following edges 1 > 1
(22) YES